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Approximating tail probabilities of noncentral distributions

Suojin Wang and H. L. Gray

Department of Statistical Science

Southern Methodist University

Abstract

Gray and Wang's (1991) general method for approximating tail probabilities is applied to the

cases of noncentral X2, F and t distributions. The validity of such applications is established. The

resulting approximations are easy to compute. Numerical results show the great accuracy of the

approximations for all three most commonly used noncentral distributions.
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1. Introduction

Calculating the tail pro!,dbilities of noncentral distributions such as noncentral 12 , F and t is a

major step in many statistical applications. However, these distributions do not have a simple closed

form for the cdmulative distribution functions (CDFs) which may be expressed in the form of infinite

series only. Many methods have been proposed for approximating the CDFs of these noncentral

distributions by truncating the infinite series or using central distributions as approximations. These

methods are designed for each specific distribution.

Taking a totally different approach from the viewpoint of the Generalized Jackknife, Gray and

(in)Wang (1991) have introduced a general method referred to as the Gn -transformation for finding

functions which are easy to evaluate and give very good approximations to tail probabilities. The

transformation is based only on a general class of differential equations that include the specified

density function in the solution set. As a result this method applies to a broad class of distributions.

Since the densities of noncentral distributions are themselves in the form of infinite series, it is far



(in)
from obvious how the conditions for the Gn -transformation are met in these cases. In this note we

show that the three most commonly used noncentral distributions (noncentral X 2, F and t) all satisfy

the conditions so that the Gn -transformation provides a good alternative in approximating the tail

probabilties of these distributions. Its high degree of accuracy even in the extreme tails is maintained,

as will be shown in numerical examples.

(n)-We first briefly review the Gn -transformation. Let f be a density function and assume that we

wish to approximate the tail probability

G(x) = J f(t) dt . (1)
x

Let

ek 4 'k i

Ik(x) x 2- 7
k = 0 x

where Qk0 =?= 0 and ik Is an integer with rk k. Suppose that f(x) satisfies the following differential

equation

Um(X) f(m)(x) + UM I(x) f (m-1)(x) + ... + U1(x) f(x) - f(x) = 0 (2)

for some collection of Uk'S, where m is assumed to be the smallest possible integer such that (2) holds.

(m)-
Using the idea of the Generalized Jackknife, Gray and Wang (1991) define the Gn  transformation

approximating G(x) in (1) as

0 f(x) . .. f (x)

a, (x) a12 (x) . . . alN+l(x)

aNl(x) aN, 2 (x) • . . aNN+i(x)

(mn)Gn [f(x); aij(x)] = , (3)

1 0 ... 0

al(x) a1 2(x) . . . aN+ (x)

aN (x) aN 2 (x) ... aNN+l(x)

2... .

t -



where

Ix1 -i+1 _x) u i = I . . n ,

{xt-i+n+ I ))Ji

aij(x) = {X 2 i+n+Ye(x) ), i = n+l ... 2n ,

- x ,n+im (x) i = (m-1)n+l. N,

for j = 1,..., N+I, and N = in.

As shown in Gray and Wang (1991), most commonly used simple continuous distributions

including those in the Pearson family satisfy (2) for m = 1. Furthermore, it has been shown that

under mild regularity conditions,

(in)

n lim X Gn [f(x); aij(x)] = G(x) (4)
n(in)

Gray and Wang (1991) have examplified the extraordinary accuracy of the G nM)-transform for n as

small as 2 or 3.

2. Noncentral 12 distribution

(m)
The first application of the Gn -transformation we consider is to the noncentral chi-squared

distribution \X2 (A), where k is the degree of freedom and A is the noncentrality parameter. Cox and

Reid (1987) obtain an approximation to the distribution of X't(A) by adding a small perturbation to

the corresponding central X random variable when A is small relative to k. Cohen (1988) and Posten

(1989) have developed algorithms for the distribution of X 0(A). These algorithms require evaluating

either the central distribution function or the distribution functions of Xt12(A) for the lowest degrees

of freedom i = 1, 2 and 3.

The density of X12(A) can be expressed as (Johnson and Kotz, 1970, p. 132)

-(,4+x)/2 00 A xk/ -
f()= e 2k / 2 r 4 r! k/2+ r) ,x >0. (5)

2 r=O rFk2r

3



Now note that

f(x) = e -A/2 gk(x) OF, (-; k ; Lx) ,(6)

where gk(x) = e - X/ xk/2 - '/(r(k) 2 k/2) is the density of X2

00 rF

0F(-; b; z) = r
r=0 r.(b)r

is a hypergeometric function (Rainville, 1960, p. 74) and

(b)r = I , r= 0
b(b+1) . . . (b+r-1), r 1, 2,.

Let u = 0F(-: b; z). It has been shown (Rainville, 1960, p. 109) that

d~u +bdu
z 2 + -u=0. (7)

Let b = k and z = I follows from (7) that

Ix d u + 2k du - = 0(8

A dx2  A dx (8)

Substitdting u e /2f(x)/gk(x) into (8) and after some algebra we have

x f(x) + (+ (2-k)) fe(x) + x+4-k-A f(x) =0 , (9)
w'here we used the fact that g(x)-= + ( - 1)/x)gk(X). We have therefore shown that f(x)

satisfies (2) with m = 2 and t, = 2 0. Hence the application of the Gn -transform, denoted by

Gn)[f(x); aij(x)], is straightforward as long a fr)(x), r = 0,1 .... 2n+1, are obtained.

Taking r-th derivative of (9) and after some algebra we have the recursive formula

4



fr+2)( k ( -2-r-x) f r+i) W + ( k+Ax -ir) f(r)(x) -rf(r-,)(}I A (10)

for r = 1, 2 ..... .From (9) it is easily seen that equation (10) is also valid for r = 0 if we define

- )(x) =- 0. Thus we need only to evaluate f(x) and fe(x). But from (6) we have

f'1=( + k-2) f(x) + A e- ~/2g k OF,(-; k+;. A-x) (11)

By (6) and (11), it is sufficient to compute a hypergeometric function of the form

0F,(-; b: z) = _ r-)r = cr, (12)
r=0 r=0

where ca . cr z cr-, r > 1. The series in (12) converges as quickly as Z zr
r(b+r - r=1 (r!)

asymptotically. Note that Levine and Sidi's (1981) d-transformation is useful to accelerate the

convergence of the series in (12).

To compute Gn [f(x): aij(x)] in (3) a subroutine for computing the determinant of a matrix is

normally required. But when n = 1 it is easily derived that in the noncentral )2 case,

(=) A(x)
G 1[f(x); a.j(x)= B(x) (13)

where

A(x) = ... _L,_Amm , kim4(k -3)] f3 (x)

" [4x-5x±A+5k-20)-(k -2)( -3)]f2(x)J(x)

+ [-2x2+(k-4)x] f(x)(e(X))2 X2( e(X))3

5



-x 4 (-x+k+A-4)-k+2] (f'(x)) 2 +[x(-x+ Lk+A-6) + l(k+A-4)(2-k )}( ef(x)

_ 1 (_x+k+A_4)2 f 2 (x).

(2) (2)
Table 1 provides some selected values of G~n. Rapid convergence of Gn as n increases is

evident; great accuracy is obtained for n as small as 2. It is seen that the approximation is particularly

useful for extreme tails. We used a finite sum to approximate the series in (12), and therefore f(x) and

e'(x). In Table 1, 15-40 terms were needed depending on different parameters to get at least 12

significant digits correct for f(x) and fe(x). Applying Levine and Sidi's (1981) acceleration method

improves this by at least 3 more significant digits. However the quick convergence in (12) makes it

generally unnecessary to use Levine and Sidi's method. In this and the following applications, we used

the IMSL subroutine LINV3F to calculate determinants. Any other efficient algorithms can be used for

this purpose.

3. Noncentral F distribution

We now consider the application of the Gn -transform to noncentral F distributions. Despite

the different structures of the noncentral F and noncentral 12 distributions, a similar procedure can be

developed. Like in the noncentral X2 case our approach is different from those usual ones which use

central F distributions as approximations; see Hirotsu (1979). The density of a noncentral F

distribution with degrees of freedom k and p and noncentrality parameter A (denoted by Fp(A)) is

(Johnson and Kotz, 1970, p. 191)

-A/2(k) k/2 k/2 r +(P r) r Ak

k (~p2r-0 r' r(k + r) (I+\ y)(( pY) 2 +

e- A/2 h y F( +p. k (1kye kp 2 ' 2 2 ) (14)

6



where

r(k,,) (k)k/2 k/2 -

hkp(Y) = F(~ r()(1

is the density for a central F distribution with degrees of freedom k and p, and
00 (a), r

r E r!(b)r=O

is a hypergeometric function. Since

G(y) = g(t)dt = g(P s)2 ds ] f(s) ds, (15)
y x x

where x = k y

= =e-/ hk p( IF, +P. k. (x 16)
f(x) =9(k x) k e hkp (P x) F 2 '2' 2(1x) (

we need only to consider the transformed density f(x). Let u = 1FI(a; b; z). Using the fact that

(Rainville, 1960. p. 124)

z d2u + (b-z) - au= (17)
dz

and after lengthy algebra similar to those in Section 2 we can obtain that

¢,x=k_4 2+2(l+x) 2+ x, ( p 2 )+k+p+±Alf(

e"(x k-42 k+2p±4 + A (x) + R- (k+)i-4) I _ . (18)

Comparing (18) with (2), it is readily seen that m = 2, t4 = 1 and t 2 = 2.

A recursive formula for higher order derivatives of f(x) can be easily obtained by taking

derivatives on both sides of (18) and by the fact that

(hi(x) h2(x))(i)= (i) h9j (x) hi-J)(x), i = 1, 2,.

j=0

7



It is therefore only necessary to evaluate f(x) and fe(x). But

f~)-Fk. kp1f(x) + e -A/2 (k)A xk/2 - F (k+p+2. k+2. AX' ~ (9

- 2(1-*xj 2 ki(p/ 2 )(l+x)(k+p)/2 + 2 2 1 2 x

so that the essential part is to compute IFI(a; b; z). Similar to (12),

IFI(a; b; z) = dr (20)
r=0

(a+r- 1)z 00z r
where do = 1, dr - r(b+r-1) dr-1 , r = 1, 2 ..... Therefore 1F,(a; b: z) converges as fast as E

r=lIr

asymptotically.
(2)

Selected values of the Gn -transform (n = 1, 2, 3) are given in Table 2. It is clearly seen that n

2 or 3 is generally sufficient in most applications. In Table 2, up to 50 terms in (20) were used to

approximate f(x) in (16) and f'(x) in (19) to at least 12 significant digits. The last column is the

Edgeworth-series approximation by Mudholkar, Chaubey and Lin (1976). Table I shows that for n as

(2)1
small as 3 the general method Gn is more accurate in the tail than the Edgeworth-series

approximation designed only for the noncentral F.

4. Noncentral t distribution

This section concerns with noncentral t distributions. Kraemer and Paik (1979) proposed

approximations based on central t distributions assuming that the noncentrality parameter is small

relative to the degree of freedom. As we have mentioned earlier, our method does not require such

assumption on the noncentrality parameter. The density of a noncentral t distribution with k degrees

of freedom and noncentrality parameter A (denoted by tl(A)) is (Johnson and Kotz, 1970, p. 205)

gy -A e 2 2( ky2 )(k+i)/2 k I( r++) ~e k+y) 4-2A

g(Y) [()r=0 r!k y 2  
(21)

_xk r8



Let x = 1 y 2 /k. It follows that

G(y)= J g(t)dt = J g({k(s-1)}1/2 k d = 0f(s) cs, (22)
y x 2{k(s-1))'  x

where

f(x) = g({k(x-1))'
/
2/

2{k(x-1)}'

1
2  k+)/9 + r!

2- r( (o-x-1i) x r=2j r=2j+ I
Sj>o j>o

- A 2 /2 F(k+l) F -Ie ()(x\_)i/2x(k+i)/ 2 2 2' 2 . )

2

+Ae- A2/2r(k A 2) ( 23

2-F m k/2+1 2 + 2 3.

f1 (x) -- fi(x) , (24)

fl and f, are defined by the first and second term in (23), respectively. It is easily derived that

f(x) -3 2k+ 5 + A-2} e(x)Ia~x 2(x -1) 2 x

_______(k+42)(k+ 1+,A2),

+ {(k+2)(A2 -3) (L 1 )k++ 2) 4 f(x), (25)

since using (17) and the same technique as that used in Sections 2 and 3 we can show that both fl(x)

and f2 (x) sati'sfy the differential equation (25). Comparing (25) with (2) we have m = 2, 11 1 and 1 2

2. As in the case of the noncentral 12 (or F), a recursive formula for f(i)(x) (i = 2, 3, .. ) in terms

9



of lower order derivatives can be easily obtained from (25). Thus we need only the evaluation of f(x)

and fe(x) to calculate all required derivatives. It is easily obtained from (24) that

e__ - A~l 2 r(1-jJ2J( )
-1(x k+1 [f)(-1 (x F k3 A I2(x-1) 2 r()(x )1/2 x(k+s)/2 F ; ,

3 e A + 1) (k +)2)
2 f2(x) + F, + 2; (26)6 2-v r(k) xk/ 2+ 3 2 2' :2!"

It follows from (23) that evaluation of hypergeometric functions of type 1F1 (a; b; z) is a main step

which has been addre,sed in Section ,.

(2)
Some numerical results are given in Table 3 to show the quick convergence of the Gn -transform.

like in the previous cases, n = 2 or 3 is usually sufficiently accurate.

5. Conclusion

(in)
In this paper, we have considered the applications of the general method of Gn -transform for

(all prohabilities to the three most commonly used noncentral distributions. The validity of such

applications was verified and accurate numerical results were given.

Except for calculating the density and its derivatives, the Gnm)transform does not use any

particular properties of a specified distribution, making it a very general method. The method is also

ly implemented in practice. A short self-explanatory FORTRAN subroutine for the G (m )
-

transform is given in the appendix.
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APPENDIX: A SUBROUTINE FOR THE G(m)-TRANSFORM
n

SUBROUTINE GMNTRANS (M, N, L, X, FDVEC, GMN)
C
C THIS SUBROUTINE CALCULATES THE GMN-TRANSFORM.
C INPUT: M, N, L, X, FDVEC; OUTPUT: GMN(1),...,GMN(N).
C M IS DEFINED IN EQUATION (2);
C N IS THE MAXIMUM ORDER OF THE TRANSFORM;
C L - (L(1),...,L(M)) IS DEFINED IN EQUATION (2) (SET
C L(I)-I, IF L(I) UNKNOWN);
C FDVEC - (FDVEC(),...,FDVEC(M*N+M)), WHERE FDVEC(I)
C IS THE (I-1)TH DERIVATIVE OF THE DENSITY AT X.
C

IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION FDVEC(31), L(3), AI(30,30), A2(30,30), GMN(15)
DIMENSION WKA(30), JVEC(30,30), PDM(30,31), B(1)
IJOB = 4
DO 100 NI=l, N

NTL = 1+M*NI
Al(1,1) = 1.DO
A2(1,1) = 0.DO
DO 10 J = 2, NTL

Al(l,J) = 0.DO
10 A2(1,J) = FDVEC(J-1)

DO 40 J = 1, NTL
JVEC(1,J) = 1
JVEC(J,J) = 1
IF (J.EQ.1.OR.J.EQ.2) GO TO 40
IF (J.EQ.3) GO TO 30
JMD2 = J/2-1
DO 20 K = 1, JMD2

JVEC(K+1,J) = JVEC(K,J)*(J-K)/K
20 JVEC(J-K,J) = JVEC(K+1,J)
30 JD = (J-1)/2

IF (J-1.EQ.JD*2) JVEC(JD+1,J) = JVEC(JD,J)*(JD+I)/JD
40 CONTINUE

DO 60 K = 0, M-1
DO 60 I 1 1, NI

POW - L(K+1)-I+1
PDM(I+K*NI+1,1) = X**POW
DO 60 J - 1, NTL

PDM(I+K*NI+1,J+l) = PDM(I+K*NI+1,J)*(POW-J+I)/X
A1(I+K*NI+1,J) - O.DO
DO 50 II - 1, J

50 Al(I+K*NI+1,J) - Al(I+K*NI+1,J)+JVEC(Il,J)
*PDM(I+K*NI+1,I1)*FDVEC(J-Il+K+l)

A2(I+K*NI+1,J) - Al(I+K*NI+I,J)
60 CONTINUE

Dl - 10.DO
CALL LINV3F(A1, B, IJOB, NTL, 30, Dl, D2, WKA, IER)

C HERE WE USE IMSL SUBROUTINE LINV3F TO CALCULATE
C THE DETERMINANT OF A MATRIX.
C OTHER EFFICIENT SUBROUTINES CAN ALSO BE USED HERE.

D3 - 10.D0
CALL LINV3F(A2, B, IJOB, NTL, 30, D3, D4, WKA, IER)

100 GMN(NI) - D3/Dl*2.DO**(D4-D2)
RETURN
END

11
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Table 1. Relative error = R[approx.] = { I approx.-true I/true}

of approximations to the .pper tail of X(

k A x true value R[G(2) ]  R[G(2) R[G(2)]

5 1 8 .2466 1.1(2)* 1.5(4) 1.1(4)

13 .07332 2.8(3) 1.5(5) 4.5(7)

21 .003156 4.6(4) 5.1(7) 3.8(9)

5 10 20 .2189 6.2(2) 7.9(4) 8.3(6)

26 .07497 1.9(2) 1.5(4) 8.4(7)

43 .001521 2.3(3) 5.4(6) 5.5(9)

25 10 44 .1674 8.1(2) 8.0(3) 6.6(4)

50 .06824 3.2(2) 1.8(3) 9.9(5)

70 .001337 3.7(3) 4.8(5) 7.8(7)

25 25 62 .1616 9.5(2) 9.4(3) 7.4(4)

70 .06159 3.7(2) 2.0(3) 1.0(4)

94 .001295 4.7(3) 6.4(5) 1.1(6)

* 1.1(2) - 1.1 x 10-2
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Table 2. Relative error = R(approx.] = { I approx. - true I /true}

of approximations to the upper tail of Ff (A).

k p A y true value R[G( 2
)  R[G ( )] Edgeworth

2 4 2 5 .2003 2.6(4)* 1.4(7) 1.7(5)

10 .07906 2.1(5) 4.2(9) 2.9(3)

33 .01065 2.1(7) 5.1(12) 6.1(3)

2 4 15 20 .2135 9.1(4) 4.9(7) 4.2(4)

42 .06946 3.3(5) 5.5(9) 8.1(3)

106 .01353 6.7(7) 2.3(11) 7.6(3)

2 20 10 10 .1817 1.5(2) 1.3(5) 1.5(3)

15 .05327 1.7(3) 6.4(7) 3.0(3)

25 .005622 1.2(4) 5.3(8) 5.9(3)

20 20 20 3 .1775 1.7(2) 8.1(4) 4.5(.1)

4 .05722 2.2(3) 5.3(5) 6.6(5)

10 .002323 1.0(5) 3.0(8) 1.2(2)

* 2.6(4) = 2.6 x 10 - 4
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Table 3. Relative error = R[approx.] = { j approx.-true I/true)

of approximations to the upper tail of tl(A).

k A y true value R[G(2) ]  R[G(2)] R[G (2)]

3 1 2 .2564 2.5(2)* 1.1(3) 1.2(4)

4 .06390 1.3(3) 3.8(6) 5.7(8)

8 .01012 7.3(5) 1.0(8) 1.9(11)

3 7 12 .2087 2.9(2) 5.4(4) 7.1(4)

19 .06397 3.4(3) 3.6(5) 1.9(5)

37 .009575 2.0(4) 1.4(8) 1.9(9)

10 7 10 .1263 5.2(2) 1.7(3) 3.5(5)

12 .04187 1.6(2) 2.2(4) 2.1(6)

17 .003113 2.5(3) 6.9(6) 1.3(8)

* 2.5(2) = 2.5 x 10 - 2
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